Proteins and cells on PEG immobilized silicon surfaces.
نویسندگان
چکیده
Silicon surfaces were modified by covalent attachment of a self-assembled (SA) polyethylene glycol (PEG) film. Adsorption of albumin, fibrinogen, and IgG to PEG immobilized silicon surfaces was studied by ellipsometry to evaluate the non-fouling and non-immunogenic properties of the surfaces. The adhesion and proliferation of human fibroblast and Hela cells onto the modified surfaces were investigated to examine their tissue biocompatibility. Coated PEG chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces. The mechanisms accounting for the reduction of protein adsorption and cell adhesion on modified surfaces were discussed.
منابع مشابه
Bioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus
Introduction: Staphylococcus aureus is a source of nosocomial infections and one of the significant concerns in patients with indwelling devices. Lysostaphin is a bacterially produced endopeptidase with a unique activity on S. aureus. Plasma, the fourth state of the material, consists of charged ions, free electrons, and activated neutral species. Biomedical applications of cold plasma are rapi...
متن کاملPatterned biofunctional poly(acrylic acid) brushes on silicon surfaces.
Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regio...
متن کاملProtein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA.
In the present study, we have utilized X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (ELM), and optical waveguide lightmode spectroscopy (OWLS) to examine the surface adsorption and protein resistance behavior of bio-inspired polymers consisting of poly(ethylene glycol) (PEG) conjugated to peptide mimics of mussel adhesive proteins. Peptides containing up to three residues ...
متن کاملTuning the Density of Poly(ethylene glycol) Chains to Control Mammalian Cell and Bacterial Attachment
Surface modification of biomaterials with polymer chains has attracted great attention because of their ability to control biointerfacial interactions such as protein adsorption, cell attachment and bacterial biofilm formation. The aim of this study was to control the immobilisation of biomolecules on silicon wafers using poly(ethylene glycol)(PEG) chains by a “grafting to” technique. In partic...
متن کاملSulfobetaine-terminated PEG improves the qualities of an immunosensing surface.
Poly(ethylene glycol) (PEG) possessing a sulfobetaine (SB) moiety at one end and a pentaethylenehexamine (N6) at the other end (SB-PEG-N6) was newly synthesized as a blocking agent for immunosensing surfaces. The N6 moiety strongly coordinates on gold surfaces, facilitating the tethering of the PEG chain to the sensor chip surface, and leaves the SB moiety free. Non-specific adsorption of bovin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 19 10 شماره
صفحات -
تاریخ انتشار 1998